Формула расчета трансформатора тока

Откуда взялись формулы расчета трансформаторов и дросселей?

Формула расчета трансформатора тока

Ранее я описал физику работы трансформатора. Однако, глядя на формулы или номограммы для инженерного расчета трансформаторов трудно представить их связь с физическими основами. А это не способствует пониманию особенностей той, или иной, методики расчета и принятых при этом допущений и ограничений. И дает простор для мифотворчества.

Я не ставлю задачу выбора лучшей методики расчета, как и подробного описания любой из них. Я просто покажу, откуда взялись все эти формулы, и что они значат.

Но сначала нужно сказать пару слов о самих трансформаторах. Трансформатор может не иметь сердечника, такой трансформатор называют воздушным.

Сердечник может быть выполнен не из ферромагнитного материала, но область применения таких трансформаторов несколько ограничена. Сердечник может быть ферромагнитным, например, из электротехнической стали (трансформаторное железо), феррита, пермалоя, и т.п.

Именно такие трансформаторы встречаются чаще всего. Кроме того, сердечники могут быть разной формы, что несколько влияет на расчет.

Особенностью ферромагнитных материалов является то, что связь индукции и напряженности магнитного поля в них не линейна. Я приводил в статье о трансформаторах иллюстрацию, повторю ее здесь

В отличии от вакуума, перемагничивание ферромагнетиков происходит не по прямой, а по семейству кривых, называемых петлями гистерезиса. Другими словами, магнитная проницаемость ферромагнетика не является постоянной.

Я говорил ранее про дифференциальную индуктивность (формула (15) в упомянутой статье), но в инженерных расчетах, вместо аналитических, используют максимальные величины индукции.

При этом работа сердечника происходит на линейных, или условно линейных, участках кривой намагничивания.

Правильно рассчитанный трансформатор в штатных режимах эксплуатации всегда работает без насыщения сердечника! Про специальные насыщающиеся трансформаторы я скажу немного позже.

Работа трансформатора без насыщения сердечника обозначает пропорциональность токов, напряжений и сопротивлений между первичной и вторичной цепями.

Все формулы из статьи о работе трансформатора, безусловно верны, но крайне неудобны для практических, инженерных расчетов. Давайте рассмотрим практический подход.

Мы уже знаем, что общий магнитный поток в сердечнике трансформатора, в штатном режиме и без насыщения сердечника, постоянен и равен потоку холостого хода. То есть, при отсутствии тока во вторичной обмотке.

Другими словами, магнитный поток холостого хода определяется током первичной обмотки на холостом ходе.

Если мы не будет рассматривать общий случай для напряжения любой формы, то решения дифференциальных уравнений дадут нам

для гармонического (синусоидального) напряжения. Здесь R сопротивление обмотки постоянному току, f частота , L индуктивность обмотки. Для напряжения прямоугольной формы формула будет отражать, по факту, переходный процесс в катушке

В реальном трансформаторе ток холостого хода будет выше, из-за паразитных индуктивностей рассеивания и потерь в магнитопроводе. Соответствующие коэффициенты, обычно, приводятся в виде таблицы к методике расчета. Обратите внимание, что для гармонического сигнала у нас формула отражает действующее значение тока, а для прямоугольного мгновенное.

Ток холостого хода стараются стараются сделать поменьше, в разумных пределах, конечно. Для маломощных трансформаторов он, обычно, не превышает 10%, а для мощных порядка 3%, от тока первичной обмотки при полной нагрузке трансформатора.

Таким образом, для заданной амплитуды первичного напряжения и частоты, или длительности импульсов, и желаемого тока холостого хода получаем требуемую индуктивность первичной обмотки. Индуктивность обмотки зависит от числа витков, магнитной проницаемости сердечника и геометрии обмотки, которая зависит от формы сердечника.

Таким образом, мы получили один из параметров трансформатора – число витков первичной обмотки. Число витков вторичной обмотки определяется коэффициентом трансформации.

Связанный с током холостого хода магнитный поток, в очень грубом первом приближении, можно оценить по формуле (3) из упоминаемой статьи. Магнитный поток это интеграл от вектора магнитной индукции по поверхности, в нашем случае, по поперечному сечению сердечника-магнитопровода (формула (4) статьи).

Таким образом, мы получаем значение магнитной индукции для заданной частоты питающего напряжения, или длительности прямоугольных импульсов, и заданной индуктивности обмотки.

Причем нам нужны амплитудные значения индукции, а не действующие.

С учетом максимально допустимой для сердечника магнитной индукции (для работы на линейном участке), мы получаем один из параметров сердечника – площадь сечения.

Обмотки трансформатора размещаются в окнах сердечника. Исключением является стержневой сердечник. Что бы обмотки можно было намотать, нужно иметь достаточный размер окна, или его площадь. Площадь требуемого окна зависит не только от количества обмоток и числа их витков, но и от диаметра провода обмоток. Диаметр провода выбирается исходя из допустимой плотности тока и температуры.

Теперь у нас есть все данные для изготовления трансформатора. У нс были сходные параметры: форма и амплитуды напряжения на первичной обмотке, ток холостого хода, требуемая амплитуда напряжения на вторичной обмотке.

Мы получили промежуточные параметры: индуктивность первичной обмотки, коэффициент трансформации, магнитная индукция в сердечнике на холостом ходу. Использовали параметры сердечника: магнитную проницаемость и максимальную магнитную индукцию, форму сердечника.

В результате получаем параметры для изготовления: число витков обмоток и диаметр провода, площадь сечения сердечника, которая позволяет выбрать требуемый размер сердечника. Мы достигли нужного результата!

Как я уже говорил, существуют разные методики инженерного (упрощенного) расчета трансформаторов. Я не могу привести и описать их все.

Формулы в этих методиках часто носят эмпирический характер, позволяя учесть основные соотношения с допустимой точностью без излишнего усложнения и углубления в физику процессов и тонкости математических преобразований.

При правильном применении, в границах, установленных для конкретной методики, это позволяет значительно упростить расчет и получить приемлемый результат. При неверном выборе методики результат может быть катастрофическим.

Обычно, расчеты начинают с определения мощности трансформатора с учетом потерь. Такую мощность часто называют габаритной мощностью трансформатора. Исходя из мощности рассчитывают диаметр провода обмоток. Задав ток холостого хода первичной обмотки получают число ее витков.

Причем, не редко, число витков считается не через ток холостого хода, а через “число витков на вольт”, которое определяется из таблицы или по номограмме. Выбор сердечника может свестись к определению площади поперечного сечения, предоставляя выбор площади окна разработчику.

А может быть использован параметр “произведение площади сечения сердечника на площадь окна”, который кажется лишней степенью свободы при выборе размеров сердечника. Но он позволяет выбрать сердечник из стандартного ряда на который точно получится намотать все обмотки.

Расчет импульсных трансформаторов, не только для передачи сигнала, но и для применения, например, в двухтактных преобразователях, ведут по другим методикам, так как требования несколько иные. Но сама суть расчета точно такая же.

Я много говорил, что дроссели нельзя путать с трансформаторами, так как они, в отличии от трансформаторов, накапливают энергию в магнитном поле. Но сейчас я скажу то, что может показаться ересью и полным отрицанием моих же слов.

Расчет дросселя почти не отличается от расчета трансформатора! Энергия, накопленная в магнитном поле, определяется током в катушке – обмотке дросселя. Вместо тока холостого хода мы должны использовать ток, обеспечивающий требуемую энергию. Собственно говоря, на этом различия расчета заканчиваются.

Однако, для дросселей желательно иметь максимально протяженный линейный участок кривой намагничивания сердечника и, как следствие, максимально стабильная магнитная проницаемость сердечника. Для этого в сердечник вводят немагнитный зазор. Он снижает магнитную проницаемость, но линеаризует кривую намагничивания.

Кажущееся радикальным различие в методиках расчета дросселя и трансформатора сводится к учету этого немагнитного зазора.

Я обещал немного рассказать о насыщающихся трансформаторах. Оставим в стороне магнитные усилители, все таки для большинства это экзотика. Рассмотрим широко известный блокинг-генератор.

В этой схеме трансформатор (дроссель) работает с насыщением сердечника. Пока ток коллектора транзистора нарастает, а сердечник не вошел в насыщение, на базовой обмотке наводится ЭДС, что создает положительную обратную связь и поддерживает транзистор открытым.

Когда сердечник вошел в насыщение, ЭДС наводимая на базовой обмотке становится недостаточной для поддержания тока коллектора. А это вызывает закрывание транзистора. Накопленная в трансформаторе энергия уходит во вторичную цепь или рассеивается на демпферном диоде (на схеме не показан).

Если объединить два блокинг-генератора, то получим широко известную схему двухтактного самовозбуждающегося преобразователя с насыщающимся трансформатором.

Однако, потери в трансформаторе для подобных схем слишком велики. Поэтому для относительно мощных преобразователей используют не насыщающийся силовой трансформатор, а ключевые транзисторы коммутируют внешним генератором, который может быть собран, в том числе, на основе подобной схемы.

Осталось коснуться особенностей работы трансформаторов на выпрямители с накопительной емкостью. Это работа на реактивную нагрузку, что вносит существенные коррективы в режим работы трансформатора. Тут два влияющих фактора. Первый, это собственно работа на емкостную нагрузку создающую дополнительный сдвиг фаз между напряжением и током.

Возможные резонансы можно даже не учитывать. Второй, это то, что диоды выпрямителя откроются только при превышении напряжения на вторичной обмотке напряжения на конденсаторе, с учетом падения напряжения на самом диоде. Это так называемый угол открывания диодов выпрямителя. В результате, получаем ток вторичной обмотки существенно отличающимся от синусоидального.

Что не может не влиять процессы в трансформаторе.

Однако, такой режим работы, обычно, уже учтен в формулах и номограммах методик расчета. Поэтому можно особо не переживать на этот счет.

Важно отметить, что упрощенные инженерные методики и формулы верны только для таких вот “стандартных” режимов использования трансформатора. Для не стационарных режимов, для переходных процессов, и в любых случаях, когда требуется точный учет влияния трансформатора, эти формулы и методики не применимы.

На этом все. Надеюсь, что теперь вам будет понятнее, откуда берутся эти упрощенные формулы и как они связаны с физикой работы трансформатора.

Источник: https://zen.yandex.ru/media/id/5b935f60343d6c00a9f52b06/otkuda-vzialis-formuly-rascheta-transformatorov-i-drosselei-5c78a40c9aa57f00b34049d2

���������� ������ ������� ��������������� � �������������������

Формула расчета трансформатора тока

������ ���������� �������������� ����������� ������� ������������� ��� �����������. � ���� ������ ���������� ������ ������� ��������������� ��������� �� 100�200 �� ���������� ��������� �������.

���� ���������� � ���������� ���, ������� ������ ������ ��������� ������� (U2 � I2), ������� �������� ��������� ����: ��� ������� ���������� ��������� ������� �������� ������������ ����� �������� ��������� ��������� �������.

�����, �������� ��� �������������� ��������� ��������, ������ ����� 80 %, ���������� ��������� ��������:

�������� ���������� �� ��������� ������� �� ��������� ����� ��������� ����� � ����������. ������� �� �������� �������� �1 ������� ������� ����������� ������� ���������� S, ������� ���������� ��� ���������� ��������. ��� ���������� �� ���������� ���������������� ����� ����� ���������� S �� �������:

��� s � � ���������� �����������, � �1 � � ������.

�� �������� S ������������ ����� ������ w' �� ���� �����. ��� ������������� ���������������� �����

���� ���������� ������ ��������� �� ����� ������� ��������, �������� �� �����, ����������� ������, �������� ��� �������� ��������� (�� ���� �������������� ������, ����� ��� ����� �������), �� ������� ��������� S � w' �� 20�30 %.

������ ����� ���������� ����� ������ �������

� �.�.

� ������ �������� ����� ���� �������� ������ ����� ���������� �� ������������� ��������� �������. ������� ��� ��� ������������� ����� ������ ����� �� 5�10 % ������ �������������.

��� ��������� �������

�������� �������� ������� ������������ �� ��������� ����� � ������ �� ���������� ��������� ����, ������� ��� ��������������� ����������� � ������� 2 �/��2. ��� ����� ��������� ���� ������� ������� ��� �������� ����� ������� � ����������� ������������ �� ����. 1 ��� ����������� �� �������:

����� ��� ������� ������� ��������, �� ����� ����� ��������� ����������� ����������� ����� ������ ��������. �� ��������� ������� ������� ������ ���� �� ����� ���, ������� ������������� ������������� ������ �������. ������� ����������� ������� ������� ������������ �� ����. 1 ��� �������������� �� �������:

��� ������� ������� ����������, ������� ��������� ����� ������ �������� ������� � ������������� ������ ������ �������, ��������� ���� ����� ��������� �� 2,5 � ���� 3 �/��2, ��� ��� ��� ������� ����� ������ ����������. ����� � ������� ��� �������� ������� ���������� ����������� ������ 0,8 ������ ���� �������������� 0,7 ��� 0,65.

� ���������� ������� ��������� ���������� ������� � ���� ����������. ����� ������� ������� ������ ������ ������� ��������� (���������� ����� ������ w �� ������� ������� �������, ������ 0,8d2��, ��� d�� � ������� ������� � ��������. ��� ����� ���������� �� ����.

1, � ������� ����� ������� ����� �������. ������� ������� ���� ������� ������������. ����� ������ �������������� ����������� �������, ������� ������� ������������ ��������� ����� ��������� � �� ������, ����� ��������� ������� ��������� � 2�3 ����.

������� ���� ���������� �� ������ ���� ������ ��������, ����������� �� �������.

������� 1

� �������� ������� ���������� ������� ������������� ��� �����������, ��������� ��������� ���������� � ������������ �������. ����� ������������� ������ ����� ������� �������� ����������, ������������ �� ���������� 600 � � ��� 50 ��, � ����� ������� ��� ������ ����, ������� U = 6,3 � � I = 3 �. ������� ���������� 220 �.

���������� ����� �������� ��������� �������:

�������� ��������� ����

������� ������� ������� ���������� �� ���������������� �����:

����� ������ �� ���� �����

��� ��������� �������

����� ������ � ������� �������� ������� �����:

� ��� ��������� �������

� ��� ���������� �������

� ��� ������� ������ ����

�����������, ��� ���� ���������� ����� ������� ������� 5×3 = 15 ��2 ��� 1500 ��2, � � ��������� �������� �������� � ��������� ���������: d1�� = 0,44 ��; d2�� = 0,2 ��; d3�� = 1,2 ��.

�������� ���������� ������� � ���� ����������. ������� ������� ������� �������:

� ��� ��������� �������

� ��� ���������� �������

� ��� ������� ������ ����

����� ������� ������� ������� ���������� �������� 430 ��2.

��� �����, ��� � ��� � ������ ���� ������ ������� ���� �, �������������, ������� �����������.

������ ������������������ ����� ��������� �����������. ��� ��������� ���� ������������ �� �� ������ ��������� �������� �2, � ������ �� �� �� �����, ������� ���������� ��������� ������� � ����� ���� ������� ���������������� ��������� ��.

��� �������� ������������ �� ��������:

� ��� ����������� ������������������

� ��� ����������� ������������������, ������

���� ����������������� ����� ������ � ����� �������� ��� ��������� ��������� n, �� � ������� ���� ����� �������� �, �������� ������������ �� �������, ��� ��� � ���� ������ �������� �� ����� ���������� � ����, ����� ��������� ��� �������� ����� ��������.

����� ������������ ��������� �������� �, ������� ����� ���� ������� ������ 1,15���. ��������� 1,15 ����� ��������� ��� ������������������, ������� ������ ��������� ����, ��� � ��������������. �

���� ����������� ������� ������� ������� ������� ���������� (�� �������� �), ����� ������ �� �����, ��������� ��������, ��������� ���� ��� ��������������. ��� ���� ���� ����� � ����, ��� � ����� �������, ���������� ����� ��� ��������� � ��������� �����, ��� ����� I1 � I2, ���� ����������������� ����������, � I2 � I1 ���� �� ����������.

Источник: http://ElectricalSchool.info/main/sovety/997-prostejjshijj-raschet-silovykh.html

Силовой трансформатор: формулы для определения мощности, тока, uk%

Формула расчета трансформатора тока

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора – указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные – более 5 кВА

Номинальное напряжение обмотки – напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки – ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Напряжение короткого замыкания – дадим два определения.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

Взято из ГОСТ 16110

Напряжение короткого замыкания uk – это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному

Источник – Электрооборудование станций и подстанций

Пример:

Определились с основными терминами, далее разберем как определить мощность, ток и сопротивление трансформатора на примере:

ТМ-750/10 с номинальными напряжениями 6 кВ и 0,4 кВ. Ток с высокой стороны будет 72,2 А, напряжение короткого замыкания – 5,4%. Определим ток из формулы определения полной мощности:

Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.

Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:

  • x – искомое сопротивление в именованных единицах, Ом
  • xT% – относительное сопротивление, определяемое через uk% (в случае двухобмоточных эти числа равны), отн.ед.
  • Uб – базисное напряжение, относительно которого мы ведем наш расчет (более подробно будет рассмотрено в статье про расчет токов КЗ), кВ
  • Sном – номинальная мощность, МВА

В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.

Формулы для расчета относительных сопротивлений обмоток (xT%)

Двухобмоточный трансформатор

В двухобмоточном трансформаторе все просто и uk=xt.

Трехобмоточный и автотрансформаторы

В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).

Трехфазный у которого НН расщепленная

Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.

В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.

Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви

Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.

Сохраните в закладки или поделитесь с друзьями

Для чего нужны трансформаторы?

Звезда и треугольник у трансформатора

Самое популярное

Единицы измерения физвеличин

Схемы групп соединения обмоток трансформатора

Изолированная, эффективно заземленная и глухозаземленная нейтраль

Силовой трансформатор звезда треугольник

Как проверить кабель мегаомметром

Источник: https://pomegerim.ru/elektricheskie-mashiny/ras4et-I-transformatora-po-P-U-uk.php

Как расчитать и изготовить трансформатор тока

Формула расчета трансформатора тока

Как расчитать и изготовить трансформатор тока

Виктор Хрипченко пос. Октябрьский Белгородской обл.

      Занимаясь расчетами мощного источника питания, я столкнулся с проблемой – мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы – где найти такой расчет.

Прочитал статью [1 ]; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току.

Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет).

Немного теории

      Итак, прежде всего немного теории [4]. Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи.

Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы.

Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения.

      На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на маг-нитопровод в одном и том же направлении (I1 – ток первичной обмотки, I2 -ток вторичной обмотки). Ток вторичной обмотки I2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод.

      Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало то началом вторичной обмотки н также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков.

      Алгебраическая сумма произведений I1 x W1 – I2 x W2 = 0 (пренебрегая малым током намагничивания), где W1 – количество витков первичной обмотки трансформатора тока, W2 – количество витков вторичной обмотки трансформатора тока.

      Пример. Пусть вы, задавшись током первичной обмотки в 16 А, произвели расчет и в первичной обмотке 5 витков – рассчитано. Вы задаетесь током вторичной обмотки, например, 0,1 А и согласно вышеупомянутой формулы I1 x W1 = I2 x W2 рассчитаем количество витков вторичной обмотки трансформатора.

W2 = I1 x W1 / I2

      Далее произведя вычисления L2 -индуктивности вторичной обмотки, ее сопротивление XL1, мы вычислим U2 и потом Rc. Но это чуть позже.

То есть вы видите, что задавшись током во вторичной обмотке трансформатора I2, вы только тогда вычисляете количество витков.

Ток вторичной обмотки трансформатора тока I2 можно задать любой – отсюда будет вычисляться Rc. И еще -I2 должен быть больше тех нагрузок, которые вы будете подключать

Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc).

      Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью.

И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току.

Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены.

      На рис. 2 (точки – начало намоток) показан резистор Rc, который является неотьемлимой частью трансформатора тока для согласования токов первичной и вторичной обмотки.

То есть Rc задает ток во вторичной обмотке.

В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие – внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc.

      Если нагрузка не согласованная по току – это будет генератор повышенного напряжения. Поясняю, почему так. Как уже было ранее сказано, ток вторичной обмотки трансформатора направлен в противоположную сторону от направления тока первичной обмотки.

И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая.

Индукция резко возрастает, вызывая сильный нагрев магнито-провода за счет повышенных потерь в стали.

Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге – выход его из строя.

      Типы магнитных сердечников приведены на рис. 3 [3].

      Витой или ленточный магнитопровод – одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое.

      Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники. Ферритовые сердечники обычно применяется при повышенных частотах – 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вт = 0,3 Тл максимум).

И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше.

На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).

      На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях [4] (в зависимости от применяемой марки электротехнической стали – 1,5.. .2 Тл и более) и применяются на частотах 50 Гц.. .400 Гц.

Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S – площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7…0,75 для большей точности.

Это объясняется конструктивной особенностью ленточных магнитопроводов.

      Что такое ленточный разрезной магнитопровод (рис. 3)? Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400.. .500 °С для улучшения их магнитных свойств.

Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .

0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000.. .1100 °С.

      Для определения магнитных свойств таких магнитопроводов надо намотать 20…

30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой обмотки (мкГн).

Вычислить S – площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм). И по формуле рассчитать jll – магнитную проницаемость сердечника [5]:

(1) µ = (800 x L x lm) / (N2 x S) – для ленточного и Ш-образного сердечника.

(2) µ = 2500*L(D + d) / W2 x C(D – d) – для кольцевого (тороидильного) сердечника.

      При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид.

      Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод.

      Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вт – магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вт поля, создаваемую проводником с током, в сердечнике.

      А теперь приступим к расчету трансформатора тока, применяя законы [6].

      Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи.

      Пусть будет I1 = 20 А, частота, на которой будет работать трансформатор тока, f = 50 Гц.

Возьмем ленточный кольцевой сердечник OJ125/40-10 или (40x25x10 мм), схематично представленный на рис. 4.

Размеры: D = 40 мм, d = 25 мм, С = 10 мм.

      Далее идет два расчета с подробными пояснениями как именно расчитывается трансформатор тока, но слишком большое количество формул затрудняет выложить расчеты на странице сайта. По этой причине полная версия статьи о том как расчитать трансформатор тока была конвертирована в PDF и ее можно скачать воспользовавшись ССЫЛКОЙ.        

Адрес администрации сайта: admin@soundbarrel.ru    

Источник: http://soundbarrel.ru/pitanie/trans_toka.html

Простой расчет трансформатора, как расчитать габаритную мощность трансформатора

Формула расчета трансформатора тока

Типы магнитопроводов силовых трансформаторов.

Магнитопровод низкочастотного трансформатора состоит из стальных пластин. Использование пластин вместо монолитного сердечника уменьшает вихревые токи, что повышает КПД и снижает нагрев.

Магнитопроводы вида 1, 2 или 3 получают методом штамповки.
Магнитопроводы вида 4, 5 или 6 получают путём навивки стальной ленты на шаблон, причём магнитопроводы типа 4 и 5 затем разрезаются пополам.

Магнитопроводы бывают:

1, 4 – броневые,2, 5 – стержневые,6, 7 – кольцевые.

Чтобы определить сечение магнитопровода, нужно перемножить размеры «А» и «В». Для расчётов в этой статье используется размер сечения в сантиметрах.

Трансформаторы с витыми стержневым поз.1 и броневым поз.2 магнитопроводами.

Трансформаторы с штампованными броневым поз.1 и стержневым поз.2 магнитопроводами.

Трансформаторы с витыми кольцевыми магнитопроводами.

Как определить габаритную мощность трансформатора.

Габаритную мощность трансформатора можно приблизительно определить по сечению магнитопровода. Правда, ошибка может составлять до 50%, и это связано с рядом факторов.

Габаритная мощность напрямую зависит от конструктивных особенностей магнитопровода, качества и толщины используемой стали, размера окна, величины индукции, сечения провода обмоток и даже качества изоляции между отдельными пластинами.

Чем дешевле трансформатор, тем ниже его относительная габаритная мощность.

Конечно, можно путём экспериментов и расчетов определить максимальную мощность трансформатора с высокой точностью, но смысла большого в этом нет, так как при изготовлении трансформатора, всё это уже учтено и отражено в количестве витков первичной обмотки.

Так что, при определении мощности, можно ориентироваться по площади сечения набора пластин проходящего через каркас или каркасы, если их две штуки.

P = B * S² / 1,69

Где:

P – мощность в Ваттах,
B – индукция в Тесла,
S – сечение в см²,
1,69 – постоянный коэффициент.

Пример:

Сначала определяем сечение, для чего перемножаем размеры А и Б.

S = 2,5 * 2,5 = 6,25 см²

Затем подставляем размер сечения в формулу и получаем мощность. Индукцию я выбрал 1,5Tc, так как у меня броневой витой магнитопровод.

P = 1,5 * 6,25² / 1,69 = 35 Ватт

Если требуется определить необходимую площадь сечения манитопровода исходя из известной мощности, то можно воспользоваться следующей формулой:

S = ²√ (P * 1,69 / B)

Пример:

Нужно вычислить сечение броневого штампованного магнитопровода для изготовления трансформатора мощностью 50 Ватт.

S = ²√ (50 * 1,69 / 1,3) = 8см²

О величине индукции можно справиться в таблице. Не стоит использовать максимальные значения индукции, так как они могут сильно отличаться для магнитопроводов различного качества.

Максимальные ориентировочные значения индукции.

КАК РАССЧИТАТЬ ПОНИЖАЮЩИЙ ТРАНСФОРМАТОР.

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.

В этих случаях следует пользоваться электрооборудованием, рассчитанным на пониженное напряжение питания, не более 42 вольт.

Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.

В качестве примера давайте рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт.

Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под стандартный патрон продаются в магазинах электро-товаров.

Если вы найдете лампочку другой мощности, например на 40 ватт, нет ничего страшного — подойдет и она. Просто наш трансформатор будет выполнен с запасом по мощности.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р2 = U2 • I2 = 60 ватт

Где:
Р2 – мощность на выходе трансформатора, нами задана 60 ватт;
U2 — напряжение на выходе трансформатора, нами задано 36 вольт;
I2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8.

КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р1 = Р2 / η = 60 / 0,8 = 75 ватт.

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения Р1, мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S.

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будет располагаться каркас с первичной и вторичной обмотками.
Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 • √P1

Где:

S — площадь в квадратных сантиметрах,
P1 — мощность первичной сети в ваттах.

S = 1,2 • √75 = 1,2 • 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50 / S

В нашем случае площадь сечения сердечника равна S = 10,4 см.кв.

w = 50 / 10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U1 • w = 220 • 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U2 • w = 36 • 4,8 = 172.8 витков, округляем до 173 витка.

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I1 = P1 / U1 = 75 / 220 = 0,34 ампера.

Ток во вторичной обмотке трансформатора:

I2 = P2 / U2 = 60 / 36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:

d = 0,8 √I

Для первичной обмотки диаметр провода будет:

d1 = 0,8 √I 1 = 0,8 √0,34 = 0,8 * 0,58 = 0,46 мм. Возьмем 0,5 мм.

Диаметр провода для вторичной обмотки:

d2 = 0,8 √I 2 = 0,8 √1,67 = 0,8 * 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 • d²

где: d — диаметр провода.

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм равна:

s = 0,8 • d² = 0,8 • 1,1² = 0,8 • 1,21 = 0,97 мм²

Округлим до 1,0 мм².

Из таблицы выбираем диаметры двух проводов сумма площадей поперечного сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм. и площадью по 0,5 мм². Или два провода:

— первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,

— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².
что в сумме дает: 0,79 + 0,196 = 0,986 мм². Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Источник: https://www.komitart.ru/188-prostoy-raschet-ponizhayuschego-transformatora.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.